Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
The Treatment of Pharmaceutical Wastewater: Innovative Technologies and the Adaptation of Treatment Systems ; : 247-275, 2023.
Article in English | Scopus | ID: covidwho-20238410

ABSTRACT

During a coronavirus pandemic, the use of drugs that subsequently enter and contaminate water resources increases significantly. Water contaminated with pharmaceutical substances becomes dangerous to human health and threatens the functioning of all ecosystems. The use of various methods of wastewater treatment and solving this problem are still ongoing, so this chapter is devoted to one of the improved method that provides a synergistic effect of removing drugs from wastewaters. Advanced oxidation processes are popular for water purification, but their use is expensive, accompanied by the consumption of large amounts of electricity, and requires expensive materials. The combination of such methods with adsorption can reduce operating costs and increase process productivity, so the use of a hybrid oxidation process and adsorption is an excellent alternative for water purification from pharmaceuticals. The book chapter describes the main advantages and disadvantages of advanced oxidation processes (photocatalysis, ozonation, electrochemical oxidation, and Fenton processes). The adsorption process and effective materials used as adsorbents are described. The most common combinations of oxidation and adsorption processes, that generate active radicals, interact with a potential contaminant adsorbed on the adsorbent surface and decompose them to CO2 and H2O, are demonstrated. Hybrid methods of photocatalysis, Fenton process, ozonation and adsorption are presented, their mechanism and advantages over conventional methods in water purification from pharmaceutical compounds are described. The application of photocatalysis and adsorption is covered in details, and materials with photocatalytic properties and high surface area (iron oxides, titanium(IV) oxide, and zinc oxide) are characterized. As a result, the hybrid methods are considered effective for wastewater treatment from pharmaceutical contaminants. © 2023 Elsevier Inc. All rights reserved.

2.
Journal of the Brazilian Chemical Society ; 2023.
Article in English | Web of Science | ID: covidwho-2310779

ABSTRACT

The efforts of contrasting the effects caused by the Covid-19 (coronavirus disease 2019) pandemic increased the disposal of active pharmaceutical ingredients. This paper reports the mechanisms and kinetics of the degradation in aqueous environments induced by 'OH of two drugs, among those most widely probed at the outbreak of coronavirus, nitazoxanide and hydroxychloroquine. The investigation exploits quantum chemistry techniques and a reaction rate theory combined with diffusion-controlled processes and quantum mechanical tunneling. The reaction rate constants are obtained in an environmentally relevant temperature range. The results show that (i) the deacetylation of nitazoxanide with formation of tizoxanide is kinetically the most favorable channel, in agreement with experimental work;(ii) for hydroxychloroquine, the present theoretical calculations show that the most favorable channel is the addition of 'OH at the aromatic ring. The half-life time degradation products are for both cases in the range between 12 to 138 days. Both drugs presented toxicities between harmful and toxic as obtained by computational toxicology calculations: The toxicity is also calculated for the degradation products: (i) in the nitazoxanide degradation process, tizoxanide was characterized as more toxic, while (ii) in the case of hydroxychloroquine, the major degradation product showed a decrease in the toxicity.

3.
Catalysts ; 13(2):434, 2023.
Article in English | ProQuest Central | ID: covidwho-2252369

ABSTRACT

The photocatalytic degradation of the emerging contaminant paracetamol in aqueous solution has been studied under 1 SUN (~1000 W m−2) in the presence of four commercial TiO2 powders, namely sub-micrometric anatase and rutile, and nanometric brookite and P25 (the popular anatase/rutile mixture used as a benchmark in most papers). The rutile powder showed low activity, whereas, interestingly, the anatase and the brookite powders outperformed P25 in terms of total paracetamol conversion to carboxylic acids, which, according to the literature, are the final products of its degradation. To explain such results, the physicochemical properties of the powders were studied by applying a multi-technique approach. Among the physicochemical properties usually affecting the photocatalytic performance of TiO2, the presence of some surface impurities likely deriving from K3PO4 (used as crystallization agent) was found to significantly affect the percentage of paracetamol degradation obtained with the sub-micrometric anatase powder. To confirm the role of phosphate, a sample of anatase, obtained by a lab synthesis procedure and having a "clean” surface, was used as a control, though characterized by nanometric particles and higher surface area. The sample was less active than the commercial anatase, but it was more active after impregnation with K3PO4. Conversely, the presence of Cl at the surface of the rutile did not sizably affect the (overall poor) photocatalytic activity of the powder. The remarkable photocatalytic activity of the brookite nanometric powder was ascribed to a combination of several physicochemical properties, including its band structure and nanoparticles size.

4.
Int J Environ Sci Technol (Tehran) ; : 1-18, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2246660

ABSTRACT

Microplastics (MPs) and SARS-CoV-2 interact due to their widespread presence in our environment and affect the virus' behaviour indoors and outdoors. Therefore, it is necessary to study the interaction between MPs and SARS-CoV-2. The environmental damage caused by MPs is increasing globally. Emerging pollutants may adversely affect organisms, especially sewage, posing a threat to human health, animal health, and the ecological system. A significant concern with MPs in the air is that they are a vital component of MPs in the other environmental compartments, such as water and soil, which may affect human health through ingesting or inhaling. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membrane bioreactors, advanced oxidation processes, adsorption, etc., are highly effective in removing MPs; they can still serve as an entrance route due to their constantly being discharged into aquatic environments. Following that, an analysis of each process for MPs' removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, an airborne microplastic has been reported in urban areas, raising health concerns since aerosols are considered a possible route of SARS-CoV-2 disease transmission and bind to airborne MP surfaces. The MPs can be removed from wastewater through conventional treatment processes with physical processes such as screening, grit chambers, and pre-sedimentation.

5.
J Water Process Eng ; 49: 103077, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1983593

ABSTRACT

The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.

6.
Processes ; 10(5), 2022.
Article in English | Scopus | ID: covidwho-1903394

ABSTRACT

Emerging pollutants are present in wastewaters treated by conventional processes. Due to water cycle interactions, these contaminants have been reported in groundwater, surface water, and drinking waters. Since conventional processes cannot guarantee their removal or biotransformation, it is necessary to study processes that comply with complete elimination. The current literature review was conducted to describe and provide an overview of the available information about the most significant groups of emerging pollutants that could potentially be found in the wastewater and the environment. In addition, it describes the main entry and distribution pathways of emerging contaminants into the environment through the water and wastewater cycle, as well as some of the potential effects they may cause to flora, fauna, and humans. Relevant information on the SARS-CoV-2 virus and its potential spread through wastewater is included. Furthermore, it also outlines some of the Advanced Oxidation Processes (AOPs) used for the total or partial emerging pollutants removal, emphasizing the reaction mechanisms and process parameters that need to be considered. As well, some biological processes that, although slow, are effective for the biotransformation of some emerging contaminants and can be used in combination with advanced oxidation processes. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

7.
Int J Environ Res Public Health ; 19(11)2022 06 03.
Article in English | MEDLINE | ID: covidwho-1892883

ABSTRACT

In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and combined with peroxymonosulfate (PMS) as oxidants in order to generate sulphate radicals. Several key parameters such as the PMS and Basolite® F-300 concentration were evaluated and optimized using a Central Composite Experimental Design for response surface methodology for the inactivation of Escherichia coli. The assessment of the degradation of an analgesic and antipyretic pharmaceutical, antipyrine, revealed that is necessary to increase the concentration of PMS and amount of Basolite® F-300, in order to diminish the treatment time. Finally, the PMS-Basolite® F-300 system can be used for at least four cycles without a reduction in its ability to disinfect and degrade persistent emerging and dangerous pollutants such as pharmaceuticals and pathogens.


Subject(s)
Disinfection , Water Pollutants, Chemical , Antipyrine , Escherichia coli , Oxidation-Reduction , Peroxides , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
8.
Progress in Chemistry ; 34(1):207-226, 2022.
Article in English | Web of Science | ID: covidwho-1870090

ABSTRACT

The novel coronavirus pneumonia epidemic (COVID over line 19) brings a serious threat to the development of human society and the health of human beings. Due to the stability of the severe acute respiratory syndrome coronavirus 2 ( SARS over line CoV over line 2) in urban sewage, which has become one of the virus pollution sources, it has been a focus how to eliminate the existing virus in water. SARS over line CoV over line 2 structurally consists of RNA chains and protein capsids, and thus can be inactivated via reactive oxygen species ( ROS) attack. Moreover, block of biochemical metabolism and destruction of virus structure are also effective inactivation methods for SARS over line CoV over line 2 inactivation. Nanomaterials exhibit surface and interface effects, specific microstructure and excellent physicochemical properties, implying their high application potential in SARS over line CoV over line 2 inactivation. In this study, we overall review application of nanotechnologies for SARS over line CoV over line 2 inactivation, including photocatalysis, heterogeneous catalytic oxidation, ion toxicity induced inactivation, and structural effects inactivation method. Furthermore, based on the structural composition, as well as survival and transmission characteristics of SARS over line CoV over line 2 in water environment, the application potential of various nanotechnologies for SARS over line CoV over line 2 inactivation are deeply discussed. This study can provide a theoretical basis and practical reference for the application of nanotechnology for the SARS over line CoV over line 2 inactivation and the secondary transmission interruption in water.

9.
J Environ Manage ; 308: 114609, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1648358

ABSTRACT

Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, ß-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.


Subject(s)
COVID-19 , Medical Waste Disposal , Hospitals , Humans , Medical Waste Disposal/methods , Pandemics , Risk Assessment , SARS-CoV-2 , Wastewater/analysis
10.
Chem Eng J ; 430: 132845, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1458615

ABSTRACT

Glucocorticoids (GCs) have drawn great concern due to their widespread contamination in the environment and application in treating patients with COVID-19. Due to the lack of data about GC removal using advanced treatment processes, a novel Paralleling and bubbling corona discharge reactor (PBCD) combined with iron-loaded activated-carbon fibre (Fe-ACF) was addressed in this study to degrade GCs represented by Hydrocortisone (HC) and Betamethasone (BT). The results showed that the PBCD-based system can degrade GCs effectively and can achieve effective sterilization. The removal rates of GCs were ranked as PBCD/Fe-ACF > PBCD/ACF > PBCD. The concentration of E. coli was reduced from 109 to 102 CFU/mL after 60 min of PBCD-based system treatment. The abundance of bacteria in actual Hospital wastewater (HWW) was significantly reduced. Plasma changed the physical and chemical properties of ACF and Fe-ACF by etching axial grooves and enhancing stretching vibrations of surface functional groups, thus promoting adsorption and catalytic degradation. For GC degradation, the functional reactive species were identified as •OH, 1O2, and •O2 radicals. Possible degradation pathways for HC and BT were proposed, which mainly included defluorination, keto acid decarboxylation, demethylation, intramolecular cyclization, cleavage and ester hydrolysis, indicating a reduction in GC toxicity. Since GCs are widely used in patients with COVID-19 and their wastewater needs to be sterilized simultaneously, the intensive and electrically driven PBCD-based system is promising in GC pollution control and sterilization in terminal water treatment facilities.

11.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-952653

ABSTRACT

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

12.
J Environ Chem Eng ; 9(2): 104812, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-939049

ABSTRACT

The hospital wastewater imposes a potent threat to the security of human health concerning its high vulnerability towards the outbreak of several diseases. Furthermore, the outbreak of COVID-19 pandemic demanded a global attention towards monitoring viruses and other infectious pathogens in hospital wastewater and their removal. Apart from that, the presence of various recalcitrant organics, pharmaceutically active compounds (PhACs), etc. imparts a complex pollution load to water resources and ecosystem. In this review, an insight into the occurrence, persistence and removal of drug-resistant microorganisms and infectious viruses as well as other micro-pollutants have been documented. The performance of various pilot/full-scale studies have been evaluated in terms of removal of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), PhACs, pathogens, etc. It was found that many biological processes, such as membrane bioreactor, activated sludge process, constructed wetlands, etc. provided more than 80% removal of BOD, COD, TSS, etc. However, the removal of several recalcitrant organic pollutants are less responsive to those processes and demands the application of tertiary treatments, such as adsorption, ozone treatment, UV treatment, etc. Antibiotic-resistant microorganisms, viruses were found to be persistent even after the treatment of hospital wastewater, and high dose of chlorination or UV treatment was required to inactivate them. This article circumscribes the various emerging technologies, which have been used to treat PhACs and pathogens. The present review also emphasized the global concern of the presence of SARS-CoV-2 RNA in hospital wastewater and its removal by the existing treatment facilities.

SELECTION OF CITATIONS
SEARCH DETAIL